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ABSTRACT
Extracting meaningful numerical phenotypes from plant im-
ages remains a substantial bottleneck in image-based auto-
mated plant phenotyping. We classify approaches to the
analysis of automated image-based plant phenotyping into
two broad categories, namely, holistic and component-based.
Holistic analyses consider the whole plant as a single object
and measure its attributes, whereas component-based phe-
notyping analyzes the individual parts of a plant, i.e., indi-
vidual leaves and stems. Two new holistic phenotypes are
introduced in this paper, i.e., bi-angular convex-hull area ra-
tio and plant aspect ratio. Bi-angular convex-hull area ratio
is defined as the ratio of the area of the convex-hull of the
plant when viewed from the side at a particular angle and
the convex-hull of the same plant when viewed at a rotation
of 90◦. Changes in bi-angular convex-hull area ratio provide
information about temporal change in phyllotaxy, i.e., the
arrangement of leaves around a stem. Plant aspect ratio is
defined as the ratio of the height of the bounding rectan-
gle of the plant viewed from the side and the diameter of
the minimum enclosing circle of the plant when viewed from
directly above. Plant aspect ratio identifies potential differ-
ences in the canopy architecture which would be generated
by different crop accessions in the field. Two component-
based phenotyping parameters are also computed: number
of leaves, and the length of each leaf. The paper introduces
a benchmark dataset called Panicoid Phenomap-1, which
comprises images of 40 genotypes of panicoid grain crops
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captured by visible light camera once daily for 26 days using
the Lemnatec scanalyzer 3D high throughput plant pheno-
typing facility at the University of Nebraska-Lincoln, USA,
to facilitate vegetative-stage temporal phenotyping analy-
sis. Experiments are performed on Panicoid Phenomap-1
dataset to demonstrate the genetic regulation of variation
in these phenotypes in maize.

Keywords
Plant phenotyping, vegetative stage, panicoid grain crops,
maize plants, contour extraction, skeletonization.

1. INTRODUCTION
Image based plant phenotyping has the following desirable

characteristics relative to many other methods of collect-
ing plant phenotypic data: 1) non-invasive, i.e., phenotypic
traits can be measured without damaging the plants being
measured; 2) tractable to automation, i.e., with properly
engineered systems, very little, or no manual intervention
or physical human labor is required; 3) scalable, i.e., large
population of plants can be analyzed in short period of time.

For image-based plant phenotyping to provide meaning-
ful results, it is necessary to extract numerical phenotypes
from images of the plants. These numerical phenotypes en-
able statistical analysis of phenotypic variation, correlation
across different traits, and the mapping of genetic loci which
regulate variation in target phenotypes. Image-based plant
phenotyping is often applied in a high throughput fashion to
monitor and quantify changes in the parameters of pheno-
typic traits for individual plants at regular intervals under
various environmental conditions.

The panicoid grasses are a group of species which share
similar plant architectures and include a number of impor-
tant food and biofuel crops, e.g., maize, sorghum, sugar
cane, foxtail millet, proso millet, Miscanthus, and switch-
grass. Among these crops, maize (Zea mays ssp mays), also
called corn, is the most widely studied by plant biologists,
and is one of the three grain crops responsible for directly
or indirectly providing half of the world’s total calorie con-



Figure 1: Classification of vegetative stage plant phenotyp-
ing analysis.

sumption.
Recent image-based nondestructive approaches to plant

phenotyping in controlled environments have mainly consid-
ered Arabidopsis (Arabidopsis thaliana) and tobacco (Nico-
tiana tabacum) as the model plants for the study of leaf seg-
mentation using 3-dimensional histogram cubes and super-
pixels [11], plant growth and chlorophyll fluorescence analy-
sis in relation to abiotic stress situations using imaging tech-
nique called GROWSCREEN FLUORO[6], and automated
plant segmentation using active contour model [10]. Being
motivated by the lack of study of automated plant pehnotyp-
ing analysis in the case of maize plants, we develop fully au-
tomated software systems to compute new phenotypes over
a significant time interval of the vegetative stage life cycle
of maize plants, and provide detailed experimental analysis
to study the effect of these temporal phenotypes on intra-
species genetic variation on our benchmark dataset.

The paper has the following novelties: (a) it introduces the
benchmark dataset called Panicoid Phenomap-1 to facilitate
the development of new algorithms for extracting meaning-
ful phenotyping parameters from images of panicoid grain
crops; (b) it introduces fully automated software systems to
compute new phenotypes with a discussion on their signifi-
cance in the field plant science; (c) it provides an algorithm
for leaf-count and leaf-size measurement; and (d) analyses
are performed on the maize accessions included in the Pan-
icoid Phenomap-1 dataset to determine the degree to which
these phenotypes are regulated by genetic variation.

The paper is organized as follows. Section 2 describes phe-
notyping parameters computable by computer vision tech-
niques under two broad categories: holistic and component-
based, and Section 3 provides the methodology to compute
these phenotyping parameters. Section 4 introduces the
Panicoid Phenomap-1 dataset and Section 5 provides ex-
perimental results. Finally, Section 6 concludes the paper.

2. PHENOTYPES
We classify plant phenotypes into two categories: (a) holis-

tic and (b) component-based. Holistic analysis considers the
whole plant as a single object to quantify its geometrical
shape, whereas component-based phenotyping analyzes the
individual parts of a plant, i.e., leaves and stems. Holistic
phenotypes are classified as primary or basic, and derived or
advanced. Primary holistic phenotyping analysis measures

the individual attributes of the basic geometrical shape, e.g.,
height of the bounding rectangle of a plant to quantify plant
height, area of the convex-hull to quantify plant size. De-
rived holistic parameters combine two or more primary phe-
notypes for advanced plant phenotyping analysis. Fig. 1
shows the classification of vegetative stage plant phenotyp-
ing analysis.

Leaves are one of the primary organs of plants which trans-
form solar light energy into chemical energy in the form of
sugars through photosynthesis. Total leaf area is associated
with photosynthetic rate [3]. Maize plants have been shown
to alter leaf positioning (i.e., phyllotaxy) in response to light
signals perceived through the photochrome pathway in order
to optimize light interception [9]. Automated phenotyping
analysis using images of individual plants captured once per
day from multiple angles made it possible for us to study
how different maize inbreds altered their phyllotaxy at dif-
ferent points in development. We introduce a new derived
holistic phenotype, namely, bi-angular convex-hull area ratio
(BACHR), which is defined as

BACHR =
AreaCH at side view 0 ◦

AreaCH at side view 90 ◦ , (1)

where, AreaCH is the area of the convex-hull.
Variation in canopy architecture influences the propor-

tion of incident solar radiation which can be intercepted by
leaves, and thus it also influences the proportion of this en-
ergy which can be converted to chemical energy. Increases
in field planting density over the last century have shifted
the ideal ideotype for maize plants towards more erect leaf
angles. Leaf erectness has traditionally been measured by
quantifying the angle between a specifically defined leaf and
the stem of the plant. High planting densities also trigger the
shade avoidance response, triggering plants to invest more
energy in stem elongation at the expense of yield. Artifi-
cial selection for yield at high planting densities [1] has also
driven a reduction in the shade avoidance response of maize
hybrids, likely also mediated through the phytochrome path-
way [2]. Here we sought to develop and test an alternative
derived holistic phenotype which we call as plant aspect ratio
(PAR) that integrates data on plant height and leaf extent.

PAR is defined as

PAR =
HeightBR at side view

DiameterMEC at top view
, (2)

where, HeightBR and DiameterMEC respectively denote
the height of the bounding rectangle (BR) of the plant in
side view 0 ◦, and the diameter of the minimum enclosing
circle (MEC) of the plant in top view. Plant aspect ratio
is a metric for distinguishing between genotypes with nar-
row versus wide leaf extent after controlling for plant height.
The height of the bounding box enclosing a plant from the
side view is not affected by the angle of leaves relative to the
camera, however, the angle of leaves relative to the camera
does influence the apparent width of the plant as viewed
from the side. Hence, to compute plant aspect ratio, we
consider the height of the plant from the side view and the
diameter of the minimum enclosing circle of the plant from
the top view, as the diameter of the minimum enclosing cir-
cle in the top view provides a good approximation of the
actual width of the plant while being unaffected by the an-
gle of plant leaves relative to the camera. Since, bi-angular
convex-hull area ratio and plant aspect ratio are the ratios



of two parameters of same units, they are independent of
change in scale.

Plants are not static, but changing organisms with consis-
tently increasing complexity in shape and appearance over
time [11]. The growth of a plant is best interpreted by
the number of leaves and the size of each leaf. Thus, for
component-based phenotypes, we introduce an algorithm to
count the number of leaves of a plant, and measure the size
of each leaf.

3. METHODOLOGY

3.1 Background subtraction
To compute temporal phenotyping parameters, it is neces-

sary to analyze a sequence of images captured daily for each
plant as it grows over time. The first step is to segment
the growing plant (foreground) from the background, i.e.,
the part of the scene which remains static over the period
of interest, for the image sequences. The foreground, i.e.,
the plant, is segmented based on simplest frame differenc-
ing technique of background subtraction [4]. The grayscle
foreground image thus obtained, is binarized using 2D Otsu
automatic thresholding technique [7], which utilizes both the
grey level information of each pixel and its spatial correla-
tion information within the 2D neighborhood. The binary
image is subjected to connected-component analysis involv-
ing morphological operation of dilation to remove noisy pix-
els and followed by erosion to fill up any small holes inside
the plant image to give a single connected region.

3.2 Plant contour extraction
The speed of execution is increased if the computer vi-

sion operations are allowed to process a region of interest.
Since the imaging chambers of Lemnatec scanalyzer 3D high
throughput plant phenotyping system has a fixed homoge-
neous background, we use physical measurements to set the
region of interest as the region that could be occupied by the
maximally grown corn plant. Within the region of interest,
the contour of a plant is extracted as the sequence of vertices
using a traversal algorithm based on connectivity [4].

The process of contour extraction often results in a few
small contours due to segmentation noises in the region of in-
terest in addition to the desired plant contour of the largest
size. The perimeters of the extracted contours are computed
to keep the contour with largest perimeter as the desired
plant, while reducing the perimeters of all smaller contours
to zero to get rid of noises. Fig. 2(a)-(e) show the original im-
ages of a maize plant captured from side view 0 ◦ on different
days and Fig. 2(f)-(j) show the corresponding contours en-
closed by the convex-hull. Similarly, Fig. 2(k)-(o) show the
original images of a maize plant captured from side view 90
◦ on different days and Fig. 2(p)-(t) show the corresponding
contours enclosed by the convex-hull. Fig. 4(f)-(j) show the
contours enclosed by the bounding rectangle of the original
plant images from side view 0 ◦ as shown in Fig. 4(a)-(e),
respectively, and Fig. 4(p)-(t) show the contour enclosed by
the minimum bounding circle of the original plant images
from top view as shown in Fig. 4(k)-(o), respectively.

3.3 Skeletonization
To compute the component-based parameters, i.e., (a)

number of leaves, (b) size of each leaf, the binary plant is

reduced to one-pixel wide lines using a parallel thinning al-
gorithms based on iterative deletion of pixels in two sub-
iteration steps as explained in [5]. The most important step
after image thinning is to find the co-ordinates of the junc-
tion points (leaf-nodes) and the co-ordinates of the tip of
the leaves. To detect each leaf, we start at the tip of the
leaves and traverse the image pixels until we encounter the
junction points. The image pixels thus traversed in succes-
sion, is the leaf edge. Fig. 3 (a) and (c) show the original
images of two maize plants, and Fig. 3 (b) and (d) show the
leaves marked with random colors of the plants in (a) and
(c), respectively. The size of each leaf as mentioned in the
figure, is measured in terms of number of pixels along the
skeleton from the leaf-tip to the junction point. The algo-
rithm to detect and count the total number of leaves and
measure the size of each leaf is provided in Algorithm 1.

Algorithm 1 Computation of the number of leaves and the
size of each leaf of a plant

Input: The original side view images of the maize plants
from Panicoid Phenomap-1 dataset.
Output:Plant images with all leaves marked with random
colors and each leaf is associated with size in terms of pixel
units.

1: The foreground, i.e., the plant, is extracted from the
original image using frame differencing technique of
background subtraction followed by removal of non-
green pixels.

2: Binarize the extracted foreground using Otzu’s
thresholoding technique.

3: Skeletonize the binary image.
4: Determine the co-ordinates of the end points (leaf-tip)

and the junctions (leaf-node) of the skeleton image by
using Peter Kovesi’s edge linking and line segment fitting
functions in Matlab from [8].

5: Traverse along the skeleton starting from the leaf-tip un-
til it meets at the junction. The part of skeleton enclosed
between leaf-tip and leaf-junction is marked as a leaf.

6: Display the size of each leaf in terms of number of pixels
between the leaf-tip and leaf-junction along the skeleton.

4. PANICOID PHENOMAP-1 DATASET

4.1 Capturing system
Fig. 5 shows the Lemnatec scanalyzer 3D high through-

put plant phenotyping system at the University of Nebraska-
Lincoln, USA, which is used to capture multi-sensor pheno-
typing measurements of plants in a non-destructive fashion
on a daily basis. Our conveyor system has the capacity
to host 672 plants with heights up to 2.35 meters. It has
three watering stations with balance can add water to target
weight or specific volume and records the specific quantity
of water added on a daily basis.

Each plant is placed in a carrier upon the conveyor belt
which moves the plants from the greenhouse to the four
imaging cabinets in succession for capturing images. The
cameras fitted in the four imaging cabinets from left to right
are (a) visible light side view and top view, (b) infrared side
view and top view, (c) fluorescent side view and top view,
and (d) hyperspectral side view and near infrared top view.
The images are captured using five different imaging modal-



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 2: Computation of bi-angular convex-hull area ratio: rows 1 and 3- Original images of a maize plant at side view 0◦

and 90◦, respectively on (a) and (k) Day 6, (b) and (l) Day 10, (c) and (m) Day 16, (d) and (n) Day 22, and (e) and (o) Day
24. Rows 2 and 4-contours enclosed by the convex-hull of the corresponding images in rows 1 and 3, respectively.

(a) (b) (c) (d)

Figure 3: Illustration of component-based phenotyping analysis for leaf-count and leaf-size measurement: (a) and (c) Original
images of maize plants captured on two different days; (b) and (d) Plants with leaves marked with random colors and each
leaf is associated with its size measured in pixel units of images in (a) and (c).

Table 1: Specifications of different types of cameras of the Lemnatec scanalyzer 3D high throughput plant phenotyping system
at the University of Nebraska-Lincoln, USA.

Camera Type Spatial Resolution(px) Spectral range (nm) Band frame rate (fps) Bit Depth (bit)
Visible light 2454 x 2056 400-700 - 17 24
Fluorescent 1390 x 1038 620-900 - 24 14
Infrared 640 x 480 8-14 - 5 14
Near-infrared 640 x 480 900-1700 - 24 14
hyperspectral 320 line width 545-1700 243 100 16



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 4: Computation of plant aspect ratio: rows 1 and 3- Original images of a maize plant at side view 0◦ and top view on
(a) and (k) Day 7, (b) and (l) Day 11, (c) and (m) Day 14, (d) and (n) Day 17, (e) and (o) Day 18. Rows 2 and 4-contours
enclosed by the bounding rectangle and minimum enclosing circle of the images in rows 1 and 3, respectively.

(a) (b) (c) (d)

Figure 5: Lemnatec scanalyzer 3D system at the University of Nebraska-Lincoln, USA, for high throughput plant phenotyping:
(a) view of the greenhouse; (b) Lemnatec imaging chambers; (c) plant entering into the visible light chamber; and (d) plant
entering into the fluorescent chamber.



ities: visible light, fluorescent, infrared, near infrared and
hyperspectral. Each imaging cabinet has rotating lifters for
up to 360 side view images. Table 1 shows the specifications
of all types of cameras.

4.2 Dataset organization
This paper introduces Panicoid Phenomap-1 which con-

tains images of 40 total genotypes including at least one rep-
resentative accession from five panicoid grain crops: maize,
sorghum, pearl millet, proso millet and foxtail millet. Images
were collected once per day for 26 days. The imaging started
two days after planting the seeds. The dataset is designed
to facilitate the development of new computer vision algo-
rithms for the extraction of holistic phenotypic parameters
specifically from maize and to encourage researchers to test
the effectiveness of these algorithms to related crop species
with similar plant architectures. This dataset is also an
ideal candidate for evaluating leaf segmentation, leaf align-
ment and leaf tracking algorithms, as well as computation
of a diverse set of component-based phenotypes.

The folder for each plant is named as Plant ID-genotype
ID. Table 2 shows the names of the genotypes corresponding
to the genotype IDs used in the dataset. Each folder is subdi-
vided into three subfolders, namely, SideView0, SideView90
and TopView. SideView0 contains 26 images (named as
Day 001.png, Day 002.png,..., Day 026.png) captured from
0 ◦ angle, SideView90 contains 26 images captured from 90
◦ angle and top view contains 26 images captured from the
camera located at the top of the chamber. Thus, each folder
contains 26 × 3 = 78 images for 3 views (side view 0◦, side
view 90◦ and top view), totalling 78 × 176= 13728 images,
where 176 are the total number of plants. To be consistent
with the capturing side view angles, all seeds were planted in
the pots placed on the conveyor belt with the same orienta-
tion as determined by the embryo (concave area on the side
of the seed) pointing towards the north side of the green-
house. The plants were never rotated while they were on
the belt, and thus, side view 0 ◦ in the dataset implies that
the line of sight of the camera is perpendicular to the axis of
the germ of the kernel. Each chamber has a pneumatic lifter
with an electric motor rotator that rotates the plant to the
required angle, i.e., 90 ◦, to capture side view 90 ◦ images
included in the dataset. The dataset is freely available from
http://plantvision.unl.edu.

5. EXPERIMENTAL ANALYSIS

5.1 Experimental setup
Images captured from dated October 11, 2015 to Novem-

ber 04, 2015 (referred to as Day 002 to Day 026 in Pani-
coid Phenomap-1), were analyzed. The greatest difference
in plant phyllotaxy angle was computed for data from day
seven onward, as prior to day seven, several individual plants
were too small to yield consistent results. Plant aspect ratio
was quantified on Day 15 and Day 25. Several plants with
aspect ratios greater than 2.5 were only removed from the
visualization in order to increase readability. One genotype
(PHG35, genotype ID 22) exhibited poor germination (20%)
and was removed through the analysis. Purple Majesty,
genotype ID 36, did not germinate at all.

5.2 Discussion

Table 2: The genotype names corresponding to the geno-
type IDs used in the dataset. Keys- GID: genotype ID and
Gname: genotype name.

GID Gname GID Gname

1 740 21 DHB47
2 2369 22 PHG35
3 A619 23 PHG39
4 A632 24 PHG47
5 A634 25 PHG83
6 B14 26 PHJ40
7 B37 27 PHH82
8 B73 28 PHV63
9 C103 29 PHW52
10 CM105 30 PHZ51
11 LH123HT 31 W117HT
12 LH145 32 Wf9
13 LH162 33 Yugu1
14 LH195 34 PI614815
15 LH198 35 PI583800
16 LH74 36 Purple Majesty
17 LH82 37 BTx623
18 Mo17 38 PI535796
19 DKPB80 39 PI463255
20 PH207 40 PI578074

The boxplots in Fig. 6(a) and (b) respectively show the re-
sults of analysis for the bi-angular convex-hull area ratio and
plant aspect ratio using the experimental setup described
above. The boxplots were generated using matplotlib. Her-
itability of all three values were estimated through ANOVA
as described in [12]. Since plant aspect ratios for Day 15
and Day 25 showed skewed distributions of values, spear-
man correlation between median values of aspect ratios of
Day 15 and 25 for each genotype were calculated.

The median value of bi-angular convex-hull area ratio for
all selected corn lines was within 0.5-5. Specifically, the
highest value 4.54 appeared in the corn line PHV63 while
the common reference genotype B73 was in the middle of
the range with the value 1.56. The estimated heritability
- the proportion of total variation which can be explained
by genetic variation- for bi-angular convex-hull area ratio
was calculated to be 24.85%. This moderate value suggests
that the observed rotation is only partial under the direct
control of genetics and is likely also regulated by environ-
ment factors as well as genotype by environment interac-
tions. We hypothesize that edge plants were exposed to sig-
nificantly different red-far red ratios that plants in the center
of our experimental layout, resulting in different signals be-
ing passed through the phytochrome signalling pathway. In
additional to this type of micro-environment variation, the
non-heritable portion of variance will also include any inac-
curacy in quantification created by the software itself.

We also visualized variation in aspect ratio within the
same accessions between Day 15 and Day 25, with accessions
sorted by ascending order based upon Day 15 values. In gen-
eral, most genotypes exhibited higher plant aspect ratio val-
ues on Day 15 than on Day 25. Heritability for plant aspect
ratio was also significantly higher on Day 15 (23.23%) than
on Day 25 (14.00%). Plant aspect ratio is a derived trait
calculated from the combination of plant height and diame-
ter, which are 67.7% and 37.6% for Day 15 as well as 67.1%
and 51.2% for Day 25 respectively. We hypothesize that the



(a) (b)

Figure 6: Results of experimental analysis using boxplots for (a) bi-angular convex-hull area ratio (BACHR); and (b) plant
aspect ratio (PAR).

Figure 7: Illustration of genetic regulation of plant aspect
ratio (PAR).

greatly reduced heritability of the plant aspect ratio relative
to its component elements on Day 25 is because each of these
traits is correlated with absolute plant size which was also
highly heritable. The genotype with the highest aspect ratio
in Day 15 datasets was PHG47, and the second highest was
PHW52. PHW52 had extremely high plant-to-plant varia-
tion in aspect ratio. Interestingly, PHW52 was the genotype
with the largest aspect ratio in Day 25. The genotype with
the largest plant to plant variation such as PH207 in Day
25 and PHW52 in Day 15 contributed much to both genetic
and residual variation. Plant aspect ratio showed a mod-
erately statistically significant positive correlation between
Day 15 and Day 25 (r=0.356, P-value=0.049). Therefore,
Day 15 aspect ratios of corn lines can only explain 13.3%
of the variation in Day 25 aspect ratios. This suggests that
studies of maize adult plant architecture require phenotyp-
ing plants at more mature stages of development as early
developmental stage measurements have only moderate pre-
dictive value at later stages in development.

Fig. 7 shows the average plant aspect ratio for all plants
of each of 31 genotypes through Day 7 to Day 26. It is ev-
ident from the figure that the plant aspect ratio for several
genotypes, e.g., 2369 and C103, decreases significantly with
time, which supports the fact that the rate of increase in
plant width is more compared to the plant height. How-
ever, plant aspect ratios for genotypes PHW52 and PHG39
fluctuate between two fairly similar values for Day 7 (1.04
and 0.99 for PHW52 and PHG39 respectively)) and Day
26 (1.18 and 0.65 for PHW52 and PHG39 respectively). It
is also to be noted that some genotypes have higher plant
aspect ratios (e.g., PHG47) compared to the others (e.g.,
B73). These inferences clearly demonstrate the potential of
plant aspect ratio to be an effective phenotype regulated by
genetic variation.



5.3 Software description and runtime complex-
ity analysis

Two fully automated software systems, i.e., software A
and software B are developed to respectively compute two
holistic phenotypes introduced in the paper, i.e., (a) bi-
angular convex-hull area ratio and (b) plant aspect ratio,
using OpenCV [4] and C++ on Visual Studio 2010 Express
Edition. Software A accepts the original images of the Pan-
icoid Phenomap-1 dataset as input, and results in the three
text files, i.e., ratio.txt to contain the values for bi-angular
convex-hull area ratio for all images, sideview0.txt to con-
tain the area of convex-hull of the side view 0◦ images, and
sideview90.txt to contain the area of the convex-hull of the
side view 90◦ images.

Similarly, software B accepts the original images of Pani-
coid Phenomap-1 dataset as input, and results in the three
text files, i.e., sideview.txt to contain the values for the
height of the bounding rectangle of all side view images,
topview.txt to contain the values for diameter of the mini-
mum enclosing circle for all top view images, and ratio.txt
to contain the plant aspect ratio for all images. Software
A automatically creates two folders called sideview0 and
sideview90 to respectively save the end images as shown
in Fig. 2(f)-(j) and Fig. 2(p)-(t) during execution. Simi-
larly, software B also automatically creates two folders called
sideview and topview to save the end images as shown in
Fig. 4(f)-(j) and Fig. 4(p)-(t), respectively, during execu-
tion. The execution time for software A and software B on
an Intel(R)Core(TM) i7 processor with 16 GB RAM work-
ing at 2.60-GHz using 64 bit Windows 7 operating system
are respectively 2.15 hours and 2.23 hours measured using
CPU clock time for Panicoid Phenomap-1 dataset.

6. CONCLUSIONS
The paper introduces Panicoid Phenomap-1 dataset to

facilitate vegetative stage phenotyping analysis of panicoid
grain crops using visible light images. The images are cap-
tured using Lemnatec scanalyzer 3D high-throughput plant
phenotyping facility at the UNL, USA. Two automated soft-
ware packages have been developed to compute two new ad-
vanced holistic phenotypes, namely, bi-angular convex-hull
area ratio and plant aspect ratio. Experimental analyses
are performed on Panicoid Phenomap-1 to demonstrate the
effectiveness of bi-angular convex-hull area ratio and plant
aspect ratio to respectively explain phyllotaxy and canopy
architecture of different genoytpes of maize plants.

The paper introduces an algorithm to compute component-
based phenotypes, i.e., total number of leaves and size of
each leaf of a plant. The main challenge in quantifying
component-based phenotypes based on imaging techniques
is self-occlusions. Thus, our future work will consider to
develop advanced algorithms to compute component-based
phenotypes by considering multiple views of the plants to
address self-occlusions. The future work will also consider
to release a larger dataset comprising multimodal image se-
quences of higher numbers of diverse panicoid crop varieties.
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